Canard-induced loss of stability across a homoclinic bifurcation
نویسندگان
چکیده
منابع مشابه
Nonsymmetric Lorenz Attractors from a Homoclinic Bifurcation
We consider a bifurcation of a flow in three dimensions from a double homoclinic connection to a fixed point satisfying a resonance condition between the eigenvalues. For correctly chosen parameters in the unfolding, we prove that there is a transitive attractor of Lorenz type. In particular we show the existence of a bifurcation to an attractor of Lorenz type which is semiorientable, i.e., ori...
متن کاملA Numerical Bifurcation Function for Homoclinic Orbits
We present a numerical method to locate periodic orbits near homoclinic orbits. Using a method of X.-B. Lin and solutions of the adjoint variational equation, we get a bifurcation function for periodic orbits whose period is asymptotic to innnity on approaching a homoclinic orbit. As a bonus, a linear predictor for continuation of the homoclinic orbit is easily available. Numerical approximatio...
متن کاملBifurcation from Codimension One Relative Homoclinic Cycles
We study bifurcations of relative homoclinic cycles in flows that are equivariant under the action of a finite group. The relative homoclinic cycles we consider are not robust, but have codimension one. We assume real leading eigenvalues and connecting trajectories that approach the equilibria along leading directions. We show how suspensions of subshifts of finite type generically appear in th...
متن کاملImproved Homoclinic Predictor for Bogdanov-Takens Bifurcation
An improved homoclinic predictor at a generic codim 2 Bogdanov-Takens (BT) bifucation is derived. We use the classical “blow-up” technique to reduce the canonical smooth normal form near a generic BT bifurcation to a perturbed Hamiltonian system. With a simple perturbation method, we derive explicit firstand second-order corrections of the unperturbed homoclinic orbit and parameter value. To ob...
متن کاملHomoclinic bifurcation in Chua ’ s circuit
We report our experimental observations of the Shil’nikov-type homoclinic chaos in asymmetry-induced Chua’s oscillator. The asymmetry plays a crucial role in the related homoclinic bifurcations. The asymmetry is introduced in the circuit by forcing a DC voltage. For a selected asymmetry, when a system parameter is controlled, we observed transition from large amplitude limit cycle to homoclinic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées
سال: 2015
ISSN: 1638-5713
DOI: 10.46298/arima.1989